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Molecular representation is fundamental and essential 
in the design of functional and novel chemical com-
pounds1–3. Due to the enormous magnitude of possible 

stable chemical compounds, development of an informative rep-
resentation to generalize among the entire chemical space can be 
challenging4. Conventional molecular representations, such as 
extended-connectivity fingerprints (ECFP)5, have become standard 
tools in computational chemistry. Recently, with the development of 
machine learning methods, data-driven molecular representation 
learning and its applications, including chemical property predic-
tion6–8, chemical modelling9–11 and molecule design12–14, have gath-
ered growing attention.

However, learning such representations can be difficult due to 
three major challenges. First, it is hard to represent the molecular 
information thoroughly. For instance, string-based representations, 
like SMILES15 and SELFIES16, fail to encode the important topology 
information directly. To preserve the rich structural information, 
many recent works exploit graph neural networks (GNNs)17,18, and 
have shown promising results in molecular property prediction7,19,20. 
Second, the magnitude of chemical space is enormous21, for example, 
the size of potential pharmacologically active molecules is estimated 
to be in the order of 1060 (ref. 22). This places a great difficulty for any 
molecular representations to generalize among the potential chemi-
cal compounds. Third, labelled data for molecular learning tasks are 
expensive and far from sufficient, especially when compared with 
the size of potential chemical space. Obtaining labels of molecular 
properties usually requires sophisticated and time-consuming lab 
experiments23. The breadth of chemical research further compli-
cates the challenges because the properties of interest range from 
quantum mechanics to biophysics24. Consequently, the number of 
labels in most molecular learning benchmarks is far from adequate. 
Machine learning models trained on such limited data can eas-

ily get over-fit and perform poorly on molecules dissimilar to the  
training set.

Molecular representation learning has been growing rapidly over 
the past decade with the development and success of machine learn-
ing, especially deep neural networks (DNNs)6,25,26. In conventional 
cheminformatics, molecules are represented in unique fingerprint 
(FP) vectors, such as ECFP. Given the FPs, DNNs are built to predict 
certain properties27–29. Besides the FP, string-based representations 
(like SMILES) are widely used for molecular learning30,31. Language 
models built on RNNs are a direct fit for learning representation from 
SMILES32,33. With the recent success of transformer-based archi-
tectures, such language models have been also utilized in learning 
representations from SMILES34,35. Recently, GNNs, which naturally 
encode structural information, have been introduced to molecular 
representation learning6,36. MPNN7 and D-MPNN20 implement a 
message-passing architecture to aggregate the information from mol-
ecule graphs. Further, SchNet19 models quantum interactions within 
molecules in the GNN. DimeNet37 integrates the directional informa-
tion by transforming messages based on the angle between atoms.

Benefiting from the growth of available molecule data24,38–40, 
self-supervised/pre-trained molecular representation learning 
has also been investigated. Self-supervised language models, like 
BERT41, have been implemented to learn molecular representation 
with SMILES as input42,43. On molecule graph, N-Gram Graph44 
builds the representation for the graph by assembling the vertex 
embedding in short walks, which needs no training. Hu et al.45 pro-
pose both node-level and graph-level tasks for GNN pre-training. 
However, the graph-level pre-training is based on supervised learn-
ing tasks, which is constrained by limited labels. You et al.46 extends 
the contrastive learning to unstructured graph data, but the frame-
work is not specifically designed for molecule graph learning and is 
only trained on limited molecular data.
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marks including both classification and regression tasks. Benefiting from pre-training on the large unlabelled database, MolCLR 
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In this Article, we propose MolCLR (Molecular Contrastive 
Learning of Representations via Graph Neural Networks) shown 
in Fig. 1 to address all of the above challenges. MolCLR is a 
self-supervised learning framework trained on the large unla-
belled dataset with around 10 million unique molecules. Through  
contrastive loss47,48, MolCLR learns the representations by con-
trasting positive molecule graph pairs against negative ones.  
Three molecule graph augmentation strategies are introduced: atom 
masking, bond deletion and subgraph removal. Molecule graph 
pairs augmented from the same molecule are denoted as positive, 
while others are denoted as negative. Widely used GNN models, 
graph convolutional network (GCN)17 and graph isomorphism 
network (GIN)18, are developed as GNN encoders in MolCLR to 
extract informative representation from molecule graphs. The 
pre-trained model is then fine-tuned on the downstream molecu-
lar property prediction benchmarks from MoleculeNet24. In com-
parison to GCN and GIN trained via supervised learning, our 
MolCLR significantly improves the performance on both clas-
sification and regression tasks. Benefiting from pre-training 
on the large database, MolCLR surpasses other self-supervised 
learning and pre-training strategies in multiple molecular bench-
marks. Moreover, on several tasks, our MolCLR rivals or even 
exceeds supervised learning baselines that include sophisticated 
graph convolution operations for molecules or domain-specific 
featurization. We also demonstrate that our molecule graph aug-
mentation strategies improve the performance of supervised 
learning on molecular benchmarks when utilized as a direct data 
augmentation plug-in. Further comparison between MolCLR rep-
resentations and conventional FPs indicates that MolCLR learns to 
distinguish molecular similarities from pre-training on the large 
unlabelled data. Data and code for this work can be found in the  
CodeOcean capsule49.

To summarize, (1) we propose MolCLR, a self-supervised learn-
ing framework for molecular representation learning; (2) three 
molecule graph augmentation strategies are introduced to generate 
contrastive pairs, namely atom masking, bond deletion and sub-
graph removal; (3) benefiting from pre-training on large unlabelled 
data, simple GNN models trained via MolCLR demonstrate signifi-
cant improvements on all molecular benchmarks in comparison to 
supervised learning; (4) MolCLR even boosts simple GNN models 
to the state of the art (SOTA) on several molecular benchmarks with 
fine-tuning, compared to more sophisticated GNNs, which cannot 
utilize unlabelled data.

Results
MolCLR framework. Our MolCLR model is developed upon the 
contrastive learning framework48,50. Latent representations from pos-
itive augmented molecule graph pairs are contrasted with representa-
tions from negative pairs. The whole pipeline (Fig. 1a) is composed 
of four components: data processing and augmentation, GNN-based 
feature extractor, non-linear projection head, and the normalized 
temperature-scaled cross-entropy (NT-Xent) 48 contrastive loss.

Given a SMILES data sn from a batch of size N, the corresponding 
molecule graph Gn is built, in which each node represents an atom 
and each edge represents a chemical bond between atoms. Using 
molecule graph augmentation strategies, Gn is transformed into two 
different but correlated molecule graphs: G̃i and G̃j, where i = 2n − 1 
and j = 2n. Molecule graphs augmented from the same molecule are 
denoted as a positive pair, whereas those from different molecules 
are denoted as negative pairs. The feature extractor f(⋅) is modelled 
by GNNs and maps the molecule graphs into the representations 
hi, hj ∈ R

d. In our case, we implement GCN17 and GIN18 with an 
average pooling as the feature extractor. A non-linear projection 
head g(⋅) is modelled by an MLP with one hidden layer, which maps 
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Fig. 1 | Overview of MolCLR. a, MolCLR pre-training. A SMILES sn from a batch of N molecule data is converted to a molecule graph Gn. Two stochastic 
molecule graph data augmentation operators are applied to each graph, resulting two correlated masked graphs: G̃2n−1 and G̃2n. A base feature encoder 
built on graph convolutions and the readout operation extracts the representation h2n−1, h2n. Contrastive loss is utilized to maximize agreement between 
the latent vectors z2n−1, z2n from the MLP projection head. b, Molecule graph augmentation strategies: atom masking, bond deletion and subgraph removal. 
c, The whole MolCLR framework. GNNs are first pre-trained via MolCLR to learn representative features. Fine-tuning for downstream molecular property 
predictions shares the pre-trained parameters of the GNN encoder and randomly initializes an MLP head. It then follows the supervised learning to train 
the model.
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the representations hi and hj into latent vectors zi and zj, respectively. 
NT-Xent loss48 is applied to the 2n latent vectors z’s to maximize 
the agreement of positive pairs while minimizing the agreement 
of negative ones. The framework is pre-trained on the ~10 million 
unlabelled data from PubChem40.

The MolCLR pre-trained GNN models are fine-tuned for 
molecular property prediction as shown in Fig. 1c. Similarly to 
the pre-training model, the prediction model consists of a GNN 
backbone and an MLP head, in which the former shares the same 
model as the pre-trained feature extractor, and the latter maps fea-
tures into the predicted molecular property. The GNN backbone in 
the fine-tuning model is initialized by parameter sharing from the 
pre-trained model while the MLP head is initialized randomly. The 
whole fine-tuning model is then trained in a supervised learning 
manner on the target molecular property database. More details can 
be found in the Methods section.

Molecule graph augmentation. We employ three molecule graph 
data augmentation strategies (Fig. 1b) for input molecules in 
MolCLR: atom masking, bond deletion and subgraph removal.

Atom masking. Atoms in the molecule graph are randomly masked 
with a given ratio. When an atom is masked, its atom feature xv is 
replaced by a mask token, m, which is distinguished from any atom 
features in the molecule graph shown by the red box in Fig. 1b. 
Through masking, the model is forced to learn the intrinsic chemi-
cal information (such as possible types of atoms connected by cer-
tain covalent bonds) within molecules.

Bond deletion. Bond deletion randomly deletes chemical bonds 
between the atoms with a certain ratio as the yellow box in Fig. 
1b illustrates. Unlike atom masking, which substitutes the original 
feature with a mask token, bond deletion is a more rigorous aug-
mentation as it removes the edges completely from the molecule 
graph. Forming and breaking of chemical bonds between atoms 
determines the attributes of molecules in chemical reactions51. Bond 
deletion mimics the breaking of chemical bonds, which prompts the 
model to learn correlations between the involvements of one mol-
ecule in various reactions.

Subgraph removal. Subgraph removal can be considered as a com-
bination of atom masking and bond deletion. Subgraph removal 

starts from a randomly picked origin atom. The removal process 
proceeds by masking the neighbours of the original atom, and then 
the neighbours of the neighbours, until the number of masked 
atoms reaches a given ratio of the total number of atoms. The bonds 
between the masked atoms are then deleted, such that the masked 
atoms and deleted bonds form an induced subgraph of the original 
molecule graph. As the blue box in Fig. 1b shows, the removed sub-
graph includes all the bonds between the masked atoms. By match-
ing the molecule graphs with different substructures removed, the 
model learns to find the remarkable motifs within the remaining 
subgraphs52, which greatly determines the molecular properties.

Molecular property predictions. To demonstrate the effectiveness 
of MolCLR, we benchmark the performance on multiple challeng-
ing classification and regression tasks from MoleculeNet 24. Details 
of molecular datasets can be found in Supplementary Tables 1 and 
2. Table 1 shows the test area under the curve (AUC) of the receiver 
operating characteristic curve (ROC) (that is, ROC-AUC (%)) of 
our MolCLR model on classification tasks in comparison to super-
vised and self-supervised/pre-training baseline models. The aver-
age and standard deviation of three individual runs are reported. 
MolCLRGCN and MolCLRGIN denote MolCLR pre-training with 
GCN and GIN as feature extractors, respectively. Observations from 
Table 1 are as follows. (1) In comparison with other self-supervised 
learning or pre-training strategies, our MolCLR framework achieves 
the best performance on five out of seven benchmarks, with an aver-
age improvement of 4.0%. Such improvement illustrates that our 
MolCLR is a powerful self-supervised learning strategy, which is 
easy to implement and requires little domain-specific sophistica-
tion. (2) Compared with best-performing supervised learning base-
lines, MolCLR also shows rival performance. In some benchmarks 
(for example, ClinTox, BACE, MUV), our pre-training model even 
surpasses the SOTA supervised learning methods, which include 
sophisticated aggregation operations or domain-specific featuriza-
tion. For instance, on ClinTox, MolCLR improves the ROC-AUC 
by 2.7% with respect to supervised D-MPNN. (3) Notably, MolCLR 
performs remarkably well on datasets with a limited number of 
molecules, like ClinTox, BACE and SIDER. The performance vali-
dates that MolCLR learns informative representations that can be 
transferred among different datasets.

Table 2 includes the test performance of MolCLR and base-
line models on regression benchmarks. FreeSolv, ESOL and Lipo 

Table 1 | Test performance of different models on seven classification benchmarks

Dataset BBBP Tox21 ClinTox HIV BACE SIDER MUV

Molecules 2,039 7,831 1,478 41,127 1,513 1,427 93,087

Tasks 1 12 2 1 1 27 17

RF 71.4 ± 0.0 76.9 ± 1.5 71.3 ± 5.6 78.1 ± 0.6 86.7 ± 0.8 68.4 ± 0.9 63.2 ± 2.3

SVM 72.9 ± 0.0 81.8 ± 1.0 66.9 ± 9.2 79.2 ± 0.0 86.2 ± 0.0 68.2 ± 1.3 67.3 ± 1.3

GCN17 71.8 ± 0.9 70.9 ± 2.6 62.5 ± 2.8 74.0 ± 3.0 71.6 ± 2.0 53.6 ± 3.2 71.6 ± 4.0

GIN18 65.8 ± 4.5 74.0 ± 0.8 58.0 ± 4.4 75.3 ± 1.9 70.1 ± 5.4 57.3 ± 1.6 71.8 ± 2.5

SchNet19 84.8 ± 2.2 77.2 ± 2.3 71.5 ± 3.7 70.2 ± 3.4 76.6 ± 1.1 53.9 ± 3.7 71.3 ± 3.0

MGCN53 85.0 ± 6.4 70.7 ± 1.6 63.4 ± 4.2 73.8 ± 1.6 73.4 ± 3.0 55.2 ± 1.8 70.2 ± 3.4

D-MPNN20 71.2 ± 3.8 68.9 ± 1.3 90.5 ± 5.3 75.0 ± 2.1 85.3 ± 5.3 63.2 ± 2.3 76.2 ± 2.8

Hu et al.45 70.8 ± 1.5 78.7 ± 0.4 78.9 ± 2.4 80.2 ± 0.9 85.9 ± 0.8 65.2 ± 0.9 81.4 ± 2.0

N-Gram44 91.2 ± 3.0 76.9 ± 2.7 85.5 ± 3.7 83.0 ± 1.3 87.6 ± 3.5 63.2 ± 0.5 81.6 ± 1.9

MolCLRGCN 73.8 ± 0.2 74.7 ± 0.8 86.7 ± 1.0 77.8 ± 0.5 78.8 ± 0.5 66.9 ± 1.2 84.0 ± 1.8

MolCLRGIN 73.6 ± 0.5 79.8 ± 0.7 93.2 ± 1.7 80.6 ± 1.1 89.0 ± 0.3 68.0 ± 1.1 88.6 ± 2.2

The first seven models are supervised learning methods and the last four are self-supervised/pre-training methods. Mean and standard deviation of test ROC-AUC (%) on each benchmark are reported. 
Best performing supervised and self-supervised/pre-training methods for each benchmark are marked as bold.
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use root-mean-square error (RMSE) as the evaluation metric 
while QM7, QM8 and QM9 are measured via mean-absolute 
error (MAE), following the recommendation from MoleculeNet24. 
Regression tasks are more challenging in comparison with classi-
fication since the latter only considers manually-defined discrete 
labels. Observations from Table 2 are the followings. (1) MolCLR 
surpasses other pre-training baselines in five out of six benchmarks 
and achieves almost the same performance on the remaining ESOL 
benchmark. Compared with ref. 45, which also implements GIN as 
the encoder, MolCLRGIN outperforms it on all the six regression 
databases. On QM7 and QM9, for example, the improvement ratios 
over Hu et al. are 20.9% and 45.8%, respectively. (2) In compari-
son with supervised learning models, MolCLR reaches competitive 
performance in most cases. For example, MolCLR obtains similar 
results as the best performing supervised D-MPNN on Lipo data-
base. Also, GCN and GIN achieve better prediction performance 
via MolCLR pre-training on all regression benchmarks. Although, 
in QM9, MolCLR does not rival with supervised SchNet19 and 
MGCN53. As the two models are specifically designed for quan-
tum interaction and make use of extra 3D positional informa-
tion. Notably, though SchNet and MGCN demonstrate superior  

performance on datasets concerning quantum mechanics proper-
ties (that is, QM7, QM8, and QM9), they do not show advantages 
over other supervised learning baselines on remaining benchmarks. 
Moreover, MolCLR pre-training is still demonstrated to be effective 
on the challenging QM9 benchmark. In comparison to GCN and 
GIN without pre-training, MolCLR still greatly boosts the perfor-
mance by 38.7% and 50.3%, respectively. Also, MolCLR performs 
better than other self-supervised learning baselines on QM9, which 
validates the efficacy of MolCLR. Since properties in QM9 are of 
various units and magnitudes, detailed results of QM9 are reported 
in Supplementary Table 3.

Both Tables 1 and 2 show that MolCLR pre-training greatly 
improves the performance on all the benchmarks compared to 
supervised GCN and GIN, which demonstrates the effectiveness 
of MolCLR. On classification benchmarks, the average gains via 
MolCLR are 12.4% for GCN and 16.8% for GIN. Similarly, on regres-
sions, the averaged improvement ratios are 27.6% for GCN and 
33.5% for GCN. In general, GIN demonstrates more improvement 
than GCN through MolCLR pre-training. This could be because 
GIN has more parameters and are capable of learning more repre-
sentative molecular features. Also, MolCLR shows better prediction 

Table 2 | Test performance of different models on six regression benchmarks

Dataset FreeSolv ESOL Lipo QM7 QM8 QM9

Molecules 642 1,128 4,200 6,830 21,786 130,829

Tasks 1 1 1 1 12 8

SVM 3.14 ± 0.00 1.50 ± 0.00 0.82 ± 0.00 156.9 ± 0.0 0.0543 ± 0.0010 24.613 ± 0.144

GCN17 2.87 ± 0.14 1.43 ± 0.05 0.85 ± 0.08 122.9 ± 2.2 0.0366 ± 0.0011 5.796 ± 1.969

GIN18 2.76 ± 0.18 1.45 ± 0.02 0.85 ± 0.07 124.8 ± 0.7 0.0371 ± 0.0009 4.741 ± 0.912

SchNet19 3.22 ± 0.76 1.05 ± 0.06 0.91 ± 0.10 74.2 ± 6.0 0.0204 ± 0.0021 0.081 ± 0.001

MGCN53 3.35 ± 0.01 1.27 ± 0.15 1.11 ± 0.04 77.6 ± 4.7 0.0223 ± 0.0021 0.050 ± 0.002

D-MPNN20 2.18 ± 0.91 0.98 ± 0.26 0.65 ± 0.05 105.8 ± 13.2 0.0143 ± 0.0022 3.241 ± 0.119

Hu et al.45 2.83 ± 0.12 1.22 ± 0.02 0.74 ± 0.00 110.2 ± 6.4 0.0191 ± 0.0003 4.349 ± 0.061

N-Gram44 2.51 ± 0.19 1.10 ± 0.03 0.88 ± 0.12 125.6 ± 1.5 0.0320 ± 0.0032 7.636 ± 0.027

MolCLRGCN 2.39 ± 0.14 1.16 ± 0.00 0.78 ± 0.01 83.1 ± 4.0 0.0181 ± 0.0002 3.552 ± 0.041

MolCLRGIN 2.20 ± 0.20 1.11 ± 0.01 0.65 ± 0.08 87.2 ± 2.0 0.0174 ± 0.0013 2.357 ± 0.118

The first seven models are supervised learning methods and the last four are self-supervised/pre-training methods. Mean and standard deviation of test RMSE (for FreeSolv, ESOL, Lipo) or MAE (for QM7, 
QM8 and QM9) are reported. Best performing supervised and self-supervised/pre-training methods for each benchmark are marked as bold.
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accuracy in comparison to other pre-training/self-supervised learn-
ing baselines in most cases. It should be emphasized that MolCLR 
benefits from pre-training on large unlabelled databases while 
the other supervised/self-supervised learning baselines do not. 
Leverage of unlabelled data provides a great advantage for MolCLR 
over other baselines in generalizing among the chemical space and 
various molecular properties. Influence of the pre-training database 
on MolCLR is further investigated in Supplementary Table 4 and 
Supplementary Fig. 1. Such capability of generalization bears prom-
ise for predicting potential molecular properties in drug discovery 
and design.

Optimal molecule graph augmentations. To systematically anal-
yse the effect of molecule graph augmentation strategies, we com-
pare different compositions of atom masking, bond deletion and 
subgraph removal. Shown in Fig. 2a are the ROC-AUC (%) mean 
and standard deviation of each data augmentation strategy on dif-
ferent benchmarks. Four augmentation strategies are considered: 
(1) integration of atom masking and bond deletion with both ratios 
p set to 25%; (2) subgraph removal with a random ratio p from 0% to 
25%; (3) subgraph removal with a fixed 25% ratio; and (4) composi-
tion of all the three augmentation methods. Specifically, a subgraph 
removal with a random ratio 0% to 25% is applied at first. Then if 
the ratio of masked atoms is smaller than 25%, we continue to ran-
domly mask atoms until it reaches the ratio of 25%. Similarly, if the 
bond deletion ratio is smaller than 25%, more bonds are deleted to 
reach the set ratio.

As Fig. 2a illustrates, subgraph removal with a 25% ratio reaches 
the best performance on average among all the four compositions. 

Its outstanding performance can be attributed to the fact that sub-
graph removal is an intrinsic combination of atom masking and 
bond deletion, and that subgraph removal further disentangles the 
local substructures compared with strategy 1. However, subgraph 
removal with a fixed 25% ratio performs poorly in the BBBP dataset 
because the molecule structures in BBBP are sensitive, such that a 
slight topology change can cause great property difference. Besides, 
it is worth noticing that the composition of all three augmentations 
(strategy 4) hurts the ROC-AUC compared with single subgraph 
removal augmentation in most benchmarks. A possible reason is 
that the composition of all the three augmentation strategies can 
remove a wide range of substructures within the molecule graph, 
thus eliminate the important topology information. In general, sub-
graph removal achieves superior performance in most benchmarks. 
However, it is also indicated that the optimal molecule graph aug-
mentation is task-independent.

Molecule graph augmentation on supervised learning. The mole-
cule graph augmentation strategies in our work, namely atom mask-
ing, bond deletion and subgraph removal, can be implemented as a 
generic data augmentation plug-in for any graph-based molecular 
learning methods. To validate the effectiveness of molecule graph 
augmentations on supervised molecular tasks, we train GIN mod-
els with and without augmentations from random initialization. 
Specifically, subgraph masking with a fixed ratio, 25%, is imple-
mented as the augmentation. Figure 2b documents the mean and 
standard deviation of test ROC-AUC (%) over the seven molecular 
property classification benchmarks. On all the seven benchmarks, 
GINs trained with augmentations surpass the models without 
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augmentations. Molecule graph augmentations improve the aver-
aged ROC-AUC score by 7.2%. Implementation of our molecule 
graph augmentation strategies on supervised molecular property 
prediction tasks improves the performance greatly even without 
pre-training. It is indicated that molecule graph augmentations 
are effective in helping GNNs learn robust and representative fea-
tures. For instance, subgraph removal matches partially observed 
molecule graphs. Therefore, the model learns to find the remark-
able motifs within the remaining subgraphs, which greatly benefits 
molecular property learning.

Investigation of MolCLR representation. We examine the rep-
resentations learned by pre-trained MolCLR using t-SNE embed-
ding54. The t-SNE algorithm maps close molecular representations 
to adjacent points in 2D. Figure 3 shows 100,000 molecules from 
the validation set of the PubChem database embedded to 2D via 
t-SNE, coloured based on the molecular weights. We also include 
some randomly selected molecules in the figure to illustrate 
what are the similar/dissimilar molecules learned by MolCLR 
pre-training. As shown in Fig. 3, MolCLR learns close representa-
tions for molecules with similar topology structures and functional 
groups. For instance, the three molecules shown on the top possess 
carbonyl groups connected with aryls. The two molecules shown 
on the bottom left have similar structures, where a halogen atom 
(fluorine or chlorine) is connected to benzene. This illustrates that 
even without labels, the model learns intrinsic connections between 

molecules as molecules with similar properties have close features. 
More visualizations of MolCLR representations can be found in  
Supplementary Fig. 2.

To further evaluate MolCLR, we compare the MolCLR-learned 
representations with conventional molecular FPs, for example, 
ECFP5 and RDKFP. In particular, given a query molecule, we 
extract its representation via MolCLR and calculate its cosine dis-
tances with all reference molecules in our pre-training database. 
Cosine distance between two representations (u, v) are defines as 
1− u·v

∥u∥∥v∥. All reference molecules are then ranked by the repre-
sentation distances and uniformly divided into 20 bins based on 
the ranking percentage. The lower the percentage threshold is, the 
more similar molecules are expected with respect to the query, as 
the MolCLR representations are closer. Within each bin, 5,000 mol-
ecules are randomly selected and their dice FP similarities with the 
query are calculated. Figure 4 shows an example of a query molecule 
(PubChem ID 42953211). Shown in Fig. 4a are the mean and stan-
dard deviation of FP similarities within each bin. The distribution 
of similarities using both ECFP and RDKFP are shown in Fig. 4b. 
ECFP tends to obtain lower similarities than RDKFP since the for-
mer covers a wider range of features relevant to molecular activity. It 
is shown, though, as the MolCLR representation distance increases, 
both the ECFP and RDKFP similarities decrease. The averaged 
RDKFP similarities at the top 5% is ~0.9 and drops to ~0.67 at the 
last 5%. Similarly, the averaged ECFP similarity drops from ~0.49 at 
the top 5% to ~0.21 at the last 5%. Though there are fluctuations as 
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the percentage threshold increases, the overall tendencies are con-
sistent among the MolCLR learned representations and chemical 
FPs. Namely, the distance between MolCLR representations effec-
tively reflects the molecular similarity. Besides, nine molecules that 
are closest to the query molecule in the MolCLR representation 
domain are illustrated in Fig. 4c with both FPs similarities labelled. 
These molecules share high RDKFP similarities from 0.833 to 0.985, 
which further demonstrate MolCLR learns chemically meaningful 
representations. It is observed that these selected molecules share 
the same functional groups, including alkyl halides (chlorine), ter-
tiary amines, ketones and aromatics. A thiophene structure can also 
be found in all the molecules. Notably, the second molecule in the 
first row in Fig. 4c is exactly the same as the query molecule except 
for the position of the chlorine, hence the highest similarities. It 
is indicated that through contrastive learning on large unlabelled 
data, MolCLR automatically embeds molecules to representative 
features and distinguishes the compounds in a chemically reason-
able manner. More examples of query molecules can be found in 
Supplementary Fig. 3.

Conclusion
In this work, we investigate self-supervised learning for molecular 
representation. Specifically, we propose MolCLR via GNNs and 
three molecular graph augmentation strategies: atom masking, bond 
deletion and subgraph removal. Through contrasting positive pairs 
against negative pairs from augmentations, MolCLR learns informa-
tive representation with general GNN backbones. Experiments show 
that MolCLR pre-trained GNN models achieve great improvement 
on various molecular benchmarks, and show better generalizations 
compared with models trained in the supervised learning manner.

Molecular representations learned by MolCLR demonstrate the 
transferability to molecular tasks with limited data and the power of 
generalization on the large chemical space. There are many promis-
ing directions to investigate as future works. For instance, improve-
ment of the GNN backbones (for example, transformer-based GNN 
architectures55) can help extract better molecular representations. 
Besides, visualization and interpretation of self-supervised learned 
representations are of great interest56. Such investigations can help 
researchers better understand chemical compounds and benefit 
drug discovery.

Methods
Graph neural networks. In our work, a molecule graph G is defined as G = (V, E), 
where V and E are nodes (atoms) and edges (chemical bonds), respectively57. 
Modern GNNs utilize a neighbourhood aggregation operation, which updates the 
node representation iteratively17. The aggregation update rule for a node feature on 
the kth layer of a GNN is given in equation (1):

a(k)v = AGGREGATE(k)({h(k−1)
u : u ∈ N (v)}),

h(k)v = COMBINE(k)(h(k−1)
v , a(k)v ),

(1)

where h(k)v  is the feature of node v at the kth layer and h(0)v  is initialized by node 
feature xv. N (v) denotes the set of all the neighbours of node v. To further extract a 
graph-level feature hG, readout operation integrates all the node features among the 
graph G as given in equation (2):

hG = READOUT ({h(k)u : v ∈ G}). (2)

In our work, we build GNN encoders based on GCN17 and GIN18. GCN integrates 
the aggregation and combination operations by introducing a mean pooling over 
the node itself and its adjacencies before the linear transformation. While GIN 
utilizes an MLP and weighted summation of node features in the aggregation. Both 
are simple yet generic graph convolutional operations. Additionally, we implement 
widely used mean pooling as the readout.

Contrastive learning. Contrastive learning58 aims at learning representation 
through contrasting positive data pairs against negative pairs. SimCLR48 
demonstrates that contrastive learning for images can greatly benefit from the 
composition of data augmentations and large batch sizes. Based on InfoNCE loss47, 
SimCLR proposes the NT-Xent loss as given in equation (3):

Li,j = −log
exp( sim (zi, zj)/τ)

∑2N
k=1 {k ̸= i} exp( sim (zi, zk)/τ)

, (3)

where zi and zj are latent vectors extracted from a positive data pair, N is the 
batch size, sim(⋅) measures the similarity between the two vectors, and τ is 
the temperature parameter. In our MolCLR, we follow the NT-Xent loss to 
conduct pre-training on GNN encoders and implement cosine similarity as 
sim (zi, zj) =

zTi zj
∥zi∥2∥zj∥2

. Further investigation of τ on MolCLR pre-training is 
included in Supplementary Table 5. Though contrastive learning frameworks have 
been implemented to various domains, including unstructured graphs46, sentence 
embeddings59 and robotics planning60. Contrastive learning has not yet been 
investigated comprehensively and elaborately for molecule graphs.

Datasets. Pre-training dataset. For MolCLR pre-training, we use approximately 
10 million unique unlabelled molecule SMILES collected by ChemBERTa42 from 
PubChem40. RDKit61 is then utilized to build the molecule graphs and extract 
chemical features from the SMILES strings. Within the molecule graph, each node 
represents an atom and each edge represents a chemical bond. We randomly split 
the pre-training dataset into training and validation set with a ratio of 95/5.

Downstream datasets. To benchmark the performance of our MolCLR framework, 
we use 13 datasets from MoleculeNet24, containing 44 binary classification tasks 
and 24 regression tasks in total. These tasks cover molecular properties of multiple 
domains. For all datasets except QM9, we use the scaffold split to create an 
80/10/10 train/valid/test split as suggested in ref. 45. Unlike the common random 
split, the scaffold split, which is based on molecular substructures, makes the 
prediction task more challenging yet realistic. QM9 follows the random splitting 
setting as implementations of most related works19,44,53 for comparison.

Training details. Each atom on the molecule graph is embedded by its atomic 
number and chirality type, while each bond is embedded by its type and direction. 
We implement a five-layer graph convolution17,18 with ReLU activation as the GNN 
backbone, and follow the modification reported by Hu et al.45 to make aggregations 
compatible with edge features. An average pooling is applied on each graph as the 
readout operation to extract the 512-dimension molecular representation. An MLP 
with one hidden layer maps the representation into a 256-dimension latent space. 
Adam62 optimizer with weight decay 10−5 is used to optimize the NT-Xent loss. 
After the initial 10 epochs with a learning rate, 5 × 10−4, a cosine learning decay is 
implemented. The model is trained with batch size 512 for the total 50 epochs.

For the downstream task fine-tuning, we add a randomly initialized MLP on 
top of the base GNN feature extractor. Softmax cross-entropy loss and ℓ1 loss are 
implemented for classification and regression tasks, respectively. On each task, 
we conduct 100-epoch fine-tuning of the pre-trained model three times to get the 
average and standard deviation of performance on the test set. We train the model 
on the training set only and perform search of hyper-parameters on the validation 
set for the best results. The whole framework is implemented based on Pytorch 
Geometric63. More fine-tuning details are included in Supplementary Table 6.

Baselines. Supervised learning models. We comprehensively evaluate the performance 
of our MolCLR model in comparison with supervised learning methods. For 
shallow machine learning models, Random Forest64 and Support Vector Machine65 
are implemented, which take molecular FPs as the input. Multiple GNNs are 
also included. GCN17 and GIN18,45 with edge feature involved in aggregation 
are considered. Besides, several GNN models that achieve SOTA on several 
molecular benchmarks are implemented as baselines, that is, SchNet19, MGCN53 
and D-MPNN20. These GNNs are designed specifically for molecular. For example, 
SchNet and MGCN explicitly model quantum interactions within molecules.

Self-supervised learning models. To better demonstrate the effectiveness of MolCLR 
framework, we further include other pre-training or self-supervised learning models 
as baselines. Hu et al.45 propose both node-level and graph-level pre-training for 
molecule graphs. It should be pointed out that though node-level pre-training is 
based on self-supervision, while the graph-level pre-training is supervised on some 
molecular property labels45. N-Gram graph44 is also implemented, which computes a 
compact representation directly through the molecule graph.

Data availability
The pre-training data and molecular property prediction benchmarks used in this 
work are available in the both the CodeOcean capsule at https://doi.org/10.24433/
CO.8582800.v149 and the GitHub repository at https://github.com/yuyangw/MolCLR.

Code availability
The code accompanying this work is available in both the CodeOcean capsule at 
https://doi.org/10.24433/CO.8582800.v149 and the GitHub repository at https://
github.com/yuyangw/MolCLR.
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